

Specializing Multi-Domain NMT via Penalizing Low Mutual Information

Jiyoung Lee^{*†}, Hantae Kim[‡], Hyunchang Cho[‡], Edward Choi[†] and Cheonbok Park[‡]

[†]KAIST [‡]Papago, NAVER Corp.

^{*}Work done during internship at Papago Team, NAVER Corp.

What is Multi-Domain Neural Machine Translation (NMT)?

- Multi-Domain NMT translates multiple domains within one model.
- The model should capture both **general** and **domain-specific** knowledge.

Fig 1. Multi-Domain Neural Machine Translation

What is Multi-Domain Neural Machine Translation (NMT)?

- Multi-Domain NMT translates multiple domains within one model.
- The model should capture both **general** and **domain-specific** knowledge. borrow **Mutual Information (MI)**

Fig 1. Multi-Domain Neural Machine Translation

What is Mutual Information?

Mutual Information indicates the **mutual dependency** between two random variables.

$$MI(A; B) = \mathbb{E}_{A,B}\left[\frac{P(A, B)}{P(A)P(B)}\right]$$

What is Mutual Information in Multi-Domain NMT?

In Multi-Domain NMT, we measure mutual dependency between **domain** and **translation**. Given domain *D*, source sentence *X*, target sentence *Y*, mutual dependency can be written as MI(D; Y|X).

Low MI : the mutual dependency between domain and translation is low \rightarrow domain information is less used

High MI: the mutual dependency between domain and translation is **high** \rightarrow domain information is **more** used

We compare outputs from two models with different MI distributions:

Model A with low MI, Model B with high MI.

Source	Beschreib Summenberechnung fur ein gegebenes Feld oder einen gegebenen Ausdruck.
Reference	Describe a way of computing totals for a given field or expression.
Model A with Low MI	Describe the kind of calculation for a given field or expression.
Model B with High MI	Describe the way of computing totals for a given field or expression

Fig 2. Overview of two models with different MI distributions

From the result, high MI value helps in correctly retaining domain-specific terms.

 \rightarrow In this paper, we aim to penalize low MI to have higher value to encourage model to learn domain knowledge.

How Can We Get Mutual Information?

$$\begin{split} MI(D;Y|X) &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(D,Y|X)}{p(D|X) \cdot p(Y|X)} \right] \\ &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(D|Y,X) \cdot p(Y|X)}{p(D|X) \cdot p(Y|X)} \right] \\ &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(X,Y,D) \cdot p(X)}{p(X,Y) \cdot p(X,D)} \right] \\ &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(Y|X,D)}{p(Y|X)} \right] \\ \end{split}$$
 log quotient of translation with and without domain information.

How Can We Get Mutual Information?

$$\begin{split} MI(D;Y|X) &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(D,Y|X)}{p(D|X) \cdot p(Y|X)} \right] \\ &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(D|Y,X) \cdot p(Y|X)}{p(D|X) \cdot p(Y|X)} \right] \\ &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(X,Y,D) \cdot p(X)}{p(X,Y) \cdot p(X,D)} \right] \\ &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(Y|X,D)}{p(Y|X)} \right] & \leftarrow \text{Since we do not know the true distributions, we have to approximate with model output (XMI)} \end{split}$$

How Can We Get Mutual Information?

$$\begin{split} MI(D;Y|X) &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(D,Y|X)}{p(D|X) \cdot p(Y|X)} \right] \\ &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(D|Y,X) \cdot p(Y|X)}{p(D|X) \cdot p(Y|X)} \right] \\ &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(X,Y,D) \cdot p(X)}{p(X,Y) \cdot p(X,D)} \right] \\ &= \mathbb{E}_{D,X,Y} \left[\log \frac{p(Y|X,D)}{p(Y|X)} \right] \\ &\approx \mathbb{E}_{D,X,Y} [p(Y|X,D) - p(Y|X)] \\ &\text{Domain Adapted Model} \quad \text{Generic Domain-Agnostic Model} \end{split}$$

How Can We Get Mutual Information?

We need both Domain-Adapted model and Generic Domain-Agnostic model

How Can We Get Mutual Information?

We need both Domain-Adapted model and Generic Domain-Agnostic model

How Can We Get Mutual Information?

 $MI(D; Y|X) = \mathbb{E}_{D,X,Y}\left[log\frac{p(Y|X, D)}{p(Y|X)}\right]$

 $XMI(i) = p(y_i|y_{< i}, x, \theta, \phi_d) - p(y_i|y_{< i}, x, \theta, \phi_G)$

How Can We Get Mutual Information?

 $MI(D; Y|X) = \mathbb{E}_{D,X,Y}\left[log\frac{p(Y|X, D)}{p(Y|X)}\right]$

 $XMI(i) = p(y_i|y_{< i}, x, \theta, \phi_d) - p(y_i|y_{< i}, x, \theta, \phi_G)$

How Can We Penalize Mutual Information?

$$\mathcal{L}_{\text{MI}} = \sum_{i=0}^{n_T} \underbrace{(1 - \text{XMI}(i))}_{\text{XMI}} \cdot \underbrace{(1 - p(y_i | y_{\leq i}, x, \theta, \phi_d))}_{\text{Cross Entropy Loss}}$$
weight

XMI	1-XMI		
Low	High	\rightarrow	More weight on cross entropy loss
High	Low	\rightarrow	Less weight on cross entropy loss

Experiment

OPUS (De \rightarrow En)

	IT	Koran	Law	Medical	Subtitles	Average
Mixed	43.87	20.31	58.33	55.19	30.36	41.61
Domain-Tag	44.29	20.44	58.47	55.39	30.61	41.84
WDC	44.44	20.75	58.49	55.43	30.52	41.93
Adapter	44.50	20.37	58.22	56.00	31.02	42.02
Ours	45.89 (+1.39)	20.80 (+0.43)	59.22 (+1.00)	56.34 (+0.34)	31.56 (+0.54)	42.76 (+0.74)

Tab 1. Average BLEU from five random seed experiments on OPUS

Alhub (Ko \rightarrow En)

	Finance	Ordinance	Tech	Average
Mixed	52.50	56.65	66.00	58.38
Domain-Tag	52.71	56.60	66.03	58.45
WDC	52.75	56.56	65.93	58.41
Adapter	53.13	56.97	66.25	58.78
Ours	53.87 (+0.74)	57.47 (+0.50)	66.66 (+0.41)	59.33 (+0.55)

Tab 2. Average BLEU from five random seed experiments on Alhub

- Baselines performs on par with Mixed (no distinctions among domains)
 - Baseline models are not sufficiently using domain information.
- Our model outperforms all baselines with significant margins.

Experiment

XMI Distributions in OPUS

Fig 4. XMI distributions from all domains in OPUS

- XMI values have higher values in all domains in OPUS
- Our proposed loss is effective in maximizing mutual information

Experiment

XMI Visualization on Generations

MI Value	-1.0	-0.71	-0.43	-0.14	0.14	0.43	0.71	1.0
Domain	IT							
Source	Microsoft Office ; Importieren passwortgeschützter Dateien							
Reference	Microsoft Office ; importing password protected files							
Hypothesis	Microsoft Office ; importing password protected files							
Domain	Medical							
Source	Eine Durchstechflasche enthält 150 mg Omalizumab .							
Reference	One vial contains 150 mg of omalizumab .							
Hypothesis	One vial contains 150 mg of <mark>omali</mark> zu <mark>mab</mark> .							
	Fig 5. XMI visualization in generated outputs							

Domain-specific terms (e.g., password, omalizumab) are generated with high XMI values.

Conclusion

Take Home Message

- Previous Multi-domain NMTs show similar performance as Mixed
- We encourage model to learn domain-specific knowledge by penalizing low mutual information.

Further Experiments & Analysis

- Increase in Translation Performance on Domain Specialized Sentences
- Comparison on Computation Cost for Training

poster

