

VisAlign: Dataset for Measuring the Alignment between Al and Humans in Visual Perception

Jiyoung Lee¹, Seungho Kim¹, Seunghyun Won², Joonseok Lee³, Marzyeh Ghassemi^{4,5,6}

James Thorne¹, Jaeseok Choi⁷, O-Kil Kwon⁷, Edward Choi¹

¹KAIST ²Seoul National University Bundang Hospital ³Seoul National University

⁴MIT ⁵University of Toronto ⁶Vector Institute ⁷Kangwon National University Hospital

Motivation

Why Alignment is Important in AI?

- Safety is a critical issue in AI which might cause tremendous costs.
- Ensuring deep learning safety is difficult because there is little manual control of feature interaction.
- In this project, we will evaluate **alignment** as a proxy measure for reliability.
 - Well-aligned models induce more agreeable and acceptable results.

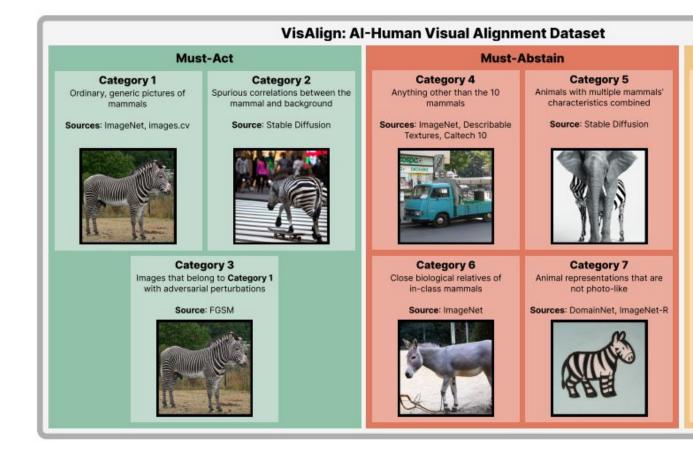
Introduction

AI-Human Visual Alignment

We focus on visual perception, "AI-human visual alignment".

Q. Is this a dog or a cat?

Dog


Abstain

Between Dog and Abstain

Work

- Dataset: VisAlign
 - total of 8 sub-categories
 - o reflects the various scenarios that can happen in the real world
- Metrics
 - Visual Alignment Metric
 - Reliability Score

Dataset

Uncertain

Category 8

Images that belong to Category 1 with cropping or 15 corruptions applied

Sources: Cropping, ImageNet-C corruptions

Dataset

Uncertain Group Label Generation

• We employ 134 MTurk workers per image to classify images in Uncertain group to estimate the ground truth distribution within an error bound of 5%.

Select an option

Metrics

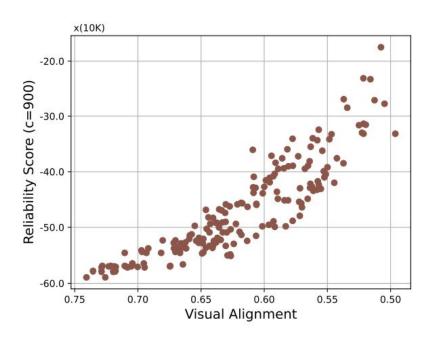
Alignment

We borrow Hellinger Distance to measure distance between model's probability and ground truth distributions.

$$h(P,Q) = \frac{1}{\sqrt{2}} \sum_{i} ||\sqrt{p_i} - \sqrt{q_i}||_2$$

Reliability Score

Since alignment is a proxy measure for reliability, we also calculated reliability score following the below table.


Sample Type	Model Action	$RS_c(x)$
	Correct Prediction	+1
Must-Act	Incorrect Prediction	-c
	Abstention	0
Must-Abstain	Original Label Prediction*	0
	Other Prediction	-c
	Abstention	+1

Experiment Results

	Visual Alignment (↓)									Reliability score (†)		
	Must-Act			Must-Abstain			Uncertain	A	DC	DC	D.C.	
	Category 1	Category 2	Category 3	Category 4	Category 5	Category 6	Category 7	Category 8	Average	RS_0	RS_{450}	RS_{900}
ViT [11]												
SP	0.261±0.051	0.556±0.029	0.367±0.038	0.793±0.057	0.808±0.057	$0.787_{\pm 0.056}$	0.792±0.059	$0.671_{\pm 0.032}$	$0.629_{\pm 0.021}$	313	-245837	-491987
ASP	0.208 ± 0.036	0.514 ± 0.033	$0.325 {\scriptstyle \pm 0.022}$	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	$0.767 \scriptstyle{\pm 0.010}$	$0.727 \scriptstyle{\pm 0.007}$	253	-285047	-570347
MD [36]	0.390 ± 0.030	$0.658 \scriptstyle{\pm 0.025}$	0.485 ± 0.023	0.725 ± 0.021	0.721 ± 0.023	0.726 ± 0.023	0.664 ± 0.025	$0.623 \scriptstyle{\pm 0.012}$	$0.624 \scriptstyle{\pm 0.005}$	270	-275580	-551430
KNN [70]	0.382 ± 0.047	0.634 ± 0.029	0.484 ± 0.033	0.679 ± 0.058	0.696 ± 0.050	0.679 ± 0.049	0.674 ± 0.067	0.612 ± 0.034	$0.605 \scriptstyle{\pm 0.020}$	282	-264768	-529818
TAPUDD [13]	$0.375 \scriptstyle{\pm 0.070}$	$0.628 \scriptstyle{\pm 0.073}$	0.468 ± 0.074	0.809 ± 0.079	$0.809 \scriptstyle{\pm 0.084}$	$0.835{\scriptstyle\pm0.065}$	$0.768 \scriptstyle{\pm 0.089}$	$0.678 \scriptstyle{\pm 0.024}$	$0.671 \scriptstyle{\pm 0.017}$	253	-285047	-570347
OpenMax [3]	0.238 ± 0.027	0.536 ± 0.033	0.344 ± 0.022	0.804 ± 0.050	0.816 ± 0.037	0.804 ± 0.059	$0.766 \scriptstyle{\pm 0.055}$	0.696 ± 0.025	0.626 ± 0.020	335	-229165	-458665
MC-Dropout [16]	0.210 ± 0.036	$0.516 \scriptstyle{\pm 0.032}$	$0.326 \scriptstyle{\pm 0.022}$	0.968 ± 0.009	$0.970 \scriptstyle{\pm 0.010}$	0.968 ± 0.009	$0.968 \scriptstyle{\pm 0.010}$	0.749 ± 0.014	$0.709 \scriptstyle{\pm 0.005}$	253	-285047	-570347
Deep Ensemble [33]	0.305	0.571	0.400	0.712	0.732	0.705	0.713	0.628	0.596	376	-205274	-410924

- Distance-based functions (MD, KNN, and TAPUDD) exhibits better visual alignment for Must-Act.
- SP aligns better in Must-Abstain.
- No current method performs well in Uncertain.
 - → There is no method that performs well in all categories.

Experiment Results

From the figure, we can see a strong correlation between visual alignment and reliability.

Therefore, we can assess visual alignment as a proxy measure for reliability.

Thank you